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Abstract

Purpose of Review The Arctic has experienced the most rapid change in climate of anywhere on Earth, and these changes
are certain to drive changes in the carbon budget of the Arctic as vegetation changes, soils warm, fires become more
frequent, and wetlands evolve as permafrost thaws. In this study, we review the extensive evidence for Arctic climate
change and effects on the carbon cycle. In addition, we re-evaluate some of the observational evidence for changing Arctic
carbon budgets.

Recent Findings Observations suggest a more active CO2 cycle in high northern latitude ecosystems. Evidence points to
increased uptake by boreal forests and Arctic ecosystems, as well as increasing respiration, especially in autumn. However,
there is currently no strong evidence of increased CH4 emissions.

Summary Long-term observations using both bottom-up (e.g., flux) and top-down (atmospheric abundance) approaches are
essential for understanding changing carbon cycle budgets. Consideration of atmospheric transport is critical for interpretation of
top-down observations of atmospheric carbon.

Keywords Arctic - Climate change - Carbon cycle - Permafrost - Methane

Introduction—a Review of Arctic Change due to losses in snow and sea ice cover, cloud-sea ice inter-

and the Carbon Cycle actions, lapse-rate change feedback, increased northward
transport of heat and moisture, and increasing cloudiness
Arctic Climate Change and atmospheric water vapor, but the importance of these

In recent decades, the Arctic mean annual surface temper-
ature has increased at over twice the rate of the global av-
erage [1, 2]. This polar amplification of surface air temper-
ature is due to a combination of surface albedo feedbacks
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individual processes is unclear [3—9]. Arctic surface air
temperatures over 2014-2019 have exceeded all previous
years in the observational record going back to 1900 [2].
Winter surface air temperatures are warming most rapidly;
e.g., during the winters of 2016 and 2018, temperatures
were 6 °C above the 1981-2010 average [1]. In 2019, win-
ter surface air temperatures in the Alaskan sector of the
Arctic were 4 °C above the baseline period of 1981-2010
[2]. Box et al. [10] used the NCEP/NCAR reanalysis to
show that temperature has been increasing at 0.7 °C/decade
during the Arctic cold season and more slowly during the
warm season, 0.4 °C/decade. Arctic climate change has
been linked to anthropogenic radiative forcing [11], and
Najafi et al. [12] showed using CMIPS5 climate models that
anthropogenic aerosols could have offset a significant
amount of warming that would otherwise have occurred.
Arctic sea ice has markedly declined with the annual min-
imum extent in September decreasing by 13% per decade
between 1979 and 2018 [1, 13]. Multi-year ice coverage (>
5 years old) decreased to less than 2% of winter sea ice area by
2018 [14, 15] and sea ice is thinning over time [1]. These
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reductions are unprecedented since the fourteenth century
[16]; Notz and Stroeve [17] directly linked these changes to
anthropogenic carbon emissions. The Arctic Ocean may be-
come ice-free during summer months by the middle of the
twenty-first century unless anthropogenic emissions are sig-
nificantly decreased [18]. Lack of sea ice results in increased
absorption of solar radiation by surface ocean waters and,
combined with transport of heat from lower latitudes, Arctic
Ocean heat content is increasing and summer mixed layer
temperatures are increasing by 0.5 °C/decade [1, 19, 20].

Terrestrial snow cover extent is also decreasing as the
Arctic warms. Mudryk et al. [21] found a strong link between
warming air temperature and reduction of snow cover extent.
Using multiple data sets, they showed that losses in snow
cover extent are greatest in autumn and spring. The trend in
snow cover extent (1981-2019) during May is — 3.4%/decade
and — 15.2%/decade for June [22]. The duration of snow cover
has also decreased over the past several decades by 2—4 days/
decade [23]. Estimates of maximum snow depth-averaged
over the pan-Arctic region are also showing declines over
the past ~4 decades as well as shifts from frozen to liquid
precipitation in relatively warmer coastal and low altitude en-
vironments [23]. Precipitation in the Arctic is also increasing
[24]. Using the NCEP/NCAR Reanalysis covering 1971 to
2017, Box et al. [10] found that cold season (October-May)
precipitation north of 50° N increased by almost 7%, and by
nearly 5% during the warm season. An analysis of weather
station observations by Wendler et al. [25] found a 17% in-
crease in precipitation for Alaska over the past 67 years, with
decadal variability affected by the phase of the Pacific
Decadal Oscillation. As precipitation and temperature in-
creased, so have evapotranspiration and river runoff into the
Arctic Ocean [10, 26, 27]. Increased river discharge results in
increased nutrient and organic carbon input to the Arctic
Ocean and freshening of ocean water. Increased precipitation
will not necessarily lead to increased soil moisture, however,
since the evolution of soil moisture will depend on the balance
between precipitation and evapotranspiration [28] as well as
drainage from Arctic soils.

Arctic hydrology is strongly influenced by the presence of
permafrost and subsurface ice. Permafrost underlies about
25% of the Northern Hemisphere land surface [29].
Biskaborn et al. [29] used borehole observations distributed
throughout the Arctic from the Global Terrestrial Network for
Permafrost to quantify temperature changes over 2007-2016
for the depth at which the annual soil temperature variation is
zero. They found that soil temperatures at sites with continu-
ous permafrost have increased over this period by about
0.4 °C, with smaller increases in discontinuous permafrost
zones (0.2 °C). Liljedahl et al. [30] examined the role of sub-
surface ice-wedge evolution in reducing inundation and in-
creasing runoff in tundra permafrost regions. Subsidence by
thawing permafrost can lead to formation of new shallow

lakes and ponds [31, 32], and about 20% of the Arctic land
surface is covered by this thermokarst landscape. Ice-wedge
thawing can lead to drainage of tundra soils, and thawing of
permafrost along slopes and coastlines can lead to slumping,
increased runoff, and transfer of organic material into rivers
and the Arctic Ocean [33, 34]. The evolution of soil hydrology
has important implications for the carbon balance of the Arctic
since wetter environments rich in organic material favor an-
aerobic respiration that results in slower soil carbon
remineralization and increased methane emissions relative to
aerobic respiration. Using Landsat imagery for 1999 to 2014,
Nitze et al. [33] found that lake area decreased by 1.4% for the
region covered by their continental scale transects. The largest
losses were found in regions of discontinuous permafrost,
while in the continuous permafrost zone, some regions had
expanding lake area and some had decreasing lake area. Other
studies found increasing lake areas due to initiation of perma-
frost thaw [35, 36]. As permafrost thaws, the column of over-
lying soil that freezes during the cold season and thaws during
the warm season (the Active Layer Zone; [37]) deepens and
more soil carbon is available for efficient remobilization to the
atmosphere where it can contribute to further warming, an
effect known as the “permafrost carbon feedback”. Chang
et al. [38] showed that a complication for modeling regional
ALD is bias and non-representativeness of driving climate
data and that this source of uncertainty can be as large as that
due to unresolved spatial heterogeneity of soil hydrology and
permafrost distribution.

An enormous amount of carbon is stored in Arctic soils,
with estimates ranging from 1137 to 1850 PgC [40-41] in-
cluding deep soils, and an unknown amount of carbon in
subsea sediments [42]. Surface permafrost carbon (0-3-m
depth) is estimated to contain 1035+ 150 PgC [41], a signif-
icant amount of soil carbon considering that the permafrost
region covers roughly 20% of global exposed land area and
that total global soil carbon is around 3100 PgC [42]. Tarnocai
et al. [40] point out that the northern permafrost region may
account for about 50% of global soil organic carbon.

Submerged relic permafrost exists along shallow continen-
tal shelves, especially in the Laptev Sea. This subsea perma-
frost was formed when the sea level was much lower during
the last glacial period [43]. Models of subsea permafrost indi-
cate the possible continued presence of subsea permafrost and
stability of intra-permafrost gas hydrates [44]. Over many
centuries, it is possible that these sediments will thaw as sea
surface temperatures rise [45], and Ferré et al. [46] showed
that even small temperature increases could lead to destabili-
zation of hydrates. However, this in itself is not guaranteed to
lead to significant carbon emissions since other factors, such
as sediment permeability must also be factored in [47].

Vegetation has also been changing in response to changing
Arctic climate [48-50]. Changes in vegetation over the last
several decades have been inferred from comparison of
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satellite observations of surface reflectance of near-infrared
light, which is reflected by vegetation, and red light, which
is absorbed by vegetation. This difference is known as the
normalized difference vegetation index (NDVI). Maximum
summer values of NDVI have been increasing across the
Arctic (“greening”, [51]), especially for 19821998, likely
due to longer growing seasons, warmer temperatures, and a
more intense hydrological cycle. From 1999 to 2015, some
regions exhibit negative (“browning”) trends, which also
shows up in NDVI integrated over the growing season.
Although peak summertime productivity has been increasing,
during other periods of the growing season, increases are not
as prominent and in recent years do not occur for the entire
Arctic. NDVI changes could be interpreted as an expansion of
woody vegetation, such as shrubs, and disturbance in the case
of browning. However, Myers-Smith [52] highlighted some
of the complexities in interpretation of vegetation index data.
Standing water, snow cover, and soil moisture can influence
surface reflectance of vegetated land. Vegetation indices can
also be nonlinear with vegetation biomass so that they become
more or less sensitive to changes over time with vegetation
changes. Myers-Smith et al. [52] also highlighted the fact that
spatial heterogeneity of Arctic vegetation and lack of coverage
of'in situ data make it difficult to compare changes in satellite
vegetation indices directly with ground observations.
Biomass burning is an important disturbance in boreal eco-
systems, and more frequently in tundra regions. Large
amounts of carbon can be quickly released into the atmo-
sphere from both above-ground biomass and soil organic mat-
ter. Over 1997-2016, van der Werfet al. [53] found emissions
of CO, from fires to average 185 TgC/year with minimum and
maximum yearly emissions of 57 and 408 TgCl/year.
Emissions of CH, are a small fraction of this amount since
the CO, emission factor is 250 times larger than that of CHy
for boreal forests and 81 times larger for peat fires which tend
to smolder and produce reduced carbon such as CHy.
Combustion of moss, peat, and litter were found to make up
85% of total combusted fuels for Canadian forest fires [54],
and removal of this surface insulating layer can affect soil
respiration and permafrost stability with further implications
for soil hydrology [55, 56]. Turetsky et al. [57] demonstrated
that late season, upland fires burn deeper and longer, some-
times even for multiple years, into the ground-layer than wet-
ter peatland and permafrost environments. 2019 was a severe
fire year across Siberia and Alaska, with record-breaking heat,
and fires may have continued to burn deep in peat soils over
the cold season and break out again during the 2020 warm
season. These holdover fires, also known as “zombie fires,”
have been observed in the Arctic in recent years and could
accelerate permafrost loss and carbon emissions ([58]; https://
phys.org/news/2020-05-scientists-zombie-arctic.html).
Indeed, 2019 and 2020 both appear to be record-setting years
for CO, emissions from fires north of the Arctic Circle
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(https://www.economist.com/graphic-detail/2020/09/07/this-
years-arctic-wildfires-are-the-worst-on-record-again, https://
phys.org/news/2020-09-co2-emissions-arctic-wildfires-eu.
html). After a burn, it can take many decades for recovery with
possible changes to entirely different types of vegetation than
were there initially [59, 60], for example, a transition from
needleleaf to deciduous trees.

An analysis of Canadian forests by Coops et al. [61]
found no long-term trend in burned area from 1985 to
2015; however, a trend towards an increasing area burned
since 2006 was noted. Ponomarev et al. [62] found an
increasing number of fires and burned area over recent
decades for a transect in Siberia. However, there is large
interannual variability in burned area, so longer records are
needed to obtain clarity on trends. Satellite burned area
products have been available since the late 1990s, and
small but not statistically significant increases in area
burned were found by Andela et al. [63]. Lightning is the
most common ignition source for high-latitude fires, and
Veraverbeke et al. [64] showed evidence for increasing
lightning ignition between 1975 and 2015 for the
Northwest Territories and Interior Alaska.

The Future of Arctic Climate

Past emissions and long lag times in ocean response mean that
changes in Arctic climate will continue at least into the mid-
twenty-first century [23], longer if no climate mitigation oc-
curs. Surface temperatures will continue to increase at about
twice the rate as lower latitudes, and depending on future
emissions, they could rise at another 4-5 °C above late
1990s’ temperatures by the mid-twenty-first century. For
high-emission scenarios, climate models (CMIP6) predict
ice-free summers in the Arctic Ocean after the mid-twenty-
first century [65]. By the middle of the century, snow cover
duration is expected to decrease by 10-20% from present-day
[23]. Earlier snowmelt will have implications for summer soil
moisture and fire ignition. Glaciers will continue to melt lead-
ing to increases in sea level rise, and more coastal erosion
exacerbated by permafrost thaw and the loss of protective
landfast sea ice [66]. The hydrologic cycle is expected to con-
tinue to intensify with 30-50% increases in winter precipita-
tion over the ocean and increasing runoff from land. The
CMIPS5 climate model ensemble also suggests that extreme
precipitation events will become more common as variability
of precipitation increases due to changes in moisture transport
from mid-latitudes, possibly linked to changes in modes of
variability such as the Arctic Oscillation, and the Pacific
Decadal Oscillation [67]. At the same time, more precipitation
may fall as rain rather than snow with further implications for
hydrology [68]. Evapotranspiration is expected to increase.
For the worst-case high-emission scenario (e.g.,
Representative Concentration Pathway leading to a radiative
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forcing of 8.5 W m 2 (RCP8.5) [69]), CMIP5 models show
that Arctic temperatures could soar above late-twentieth-
century levels by 13 °C in winter and 5 °C in summer [70].

In response to projected increases in Arctic air temperature,
the CMIP5 models show significant changes to the Arctic
permafrost distribution [23]. For RCP4.5, areas where discon-
tinuous permafrost currently exists will disappear. For the
highest emission scenario (RCPS.5), permafrost may only re-
main in the top 3 m of soils in the northernmost regions and at
highest elevations. McGuire et al. [71] analyzed an ensemble
of models with relatively detailed representations of perma-
frost and found that the model average suggests that 90% of
near-surface (<3 m) permafrost will be lost by 2300 for
RCP8.5. For RCP4.5, the models predict an average loss of
29%. Models suggest that much of the permafrost area loss
will occur by 2100, but they do not include the effects of
abrupt thaw and fires on permafrost, both processes that could
lead to more widespread and rapid permafrost loss. Recent
model simulations that include abrupt thaw suggest a three
to twelvefold increase in the amount of carbon that may be
affected, depending on emission scenario [72].

Fire and other disturbances are expected to increase in bo-
real regions and Arctic tundra [73, 74]. For RCP6.0, Young
et al. [74] found that the area of tundra burned in Alaska could
double. Walter Anthony et al. [75] project an increase in thaw
lake area, an indicator of abrupt thaw, of over 50% for the
high-emission RCP8.5 scenario. Decreases in snow cover and
changes in drainage due to permafrost thaw can further dry
Arctic ecosystems, leading to increased burning and changes
in vegetation.

Vegetation in the Arctic is expected to change significantly
in the future. A statistical approach associating climate and
vegetation types and considering two distinct emission trajec-
tories found that trees and shrubs are projected to cover 24—
52% of present-day tundra area by 2050, replacing current
vegetation communities [76]. Expansion of woody vegetation
into tundra regions may have additional effects that will feed
back on climate through more evapotranspiration, albedo
changes, and impacts on soil temperature [77]. Pearson et al.
[76] argue that these effects could serve as positive feedbacks
on regional Arctic climate.

Effects of Changing Climate on the Carbon Cycle

Arctic climate change will have important effects on the car-
bon cycle. Figure 1 summarizes schematically climate change
and its effects on the carbon cycle. Currently, the Arctic Ocean
is thought to be a small net carbon sink of 0.1-0.2 PgC/year
[23]. Increased open water should result in increased CO,
uptake by the Arctic Ocean both due to physical gas exchange
and increased marine productivity [78]. Freshwater input from
rivers and melting ice could, however, change this picture.
Increased freshwater could increase thermohaline stability
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Fig. 1 Schematic illustrating Arctic climate change and its effects on the
carbon cycle. Purple labels indicate carbon cycle responses.
(Figure produced by S. Masais, NOAA Global Monitoring Laboratory)

inhibiting transfer of carbon from surface to deep waters,
and nutrient loss from stratified surface waters could decrease
productivity, thereby limiting the biological sink. Increased
inputs of freshwater can reduce the buffering capacity of the
Arctic Ocean and limit increased uptake of CO, by delivering
carbon to surface ocean waters. Export of carbon and nutrients
from land to the Arctic Ocean can also increase productivity,
especially in coastal regions [79].

Warming of ocean waters could lead to enhanced CH,
emissions from subsea permafrost and possibly destabilized
hydrates. Shakhova et al. [80] estimated that ~8 TgCHy4/year
is being emitted to the atmosphere from submerged hydrates
in the subsea permafrost of the Laptev sea. However, emis-
sions this large are not supported by atmospheric observations
of CH,4 abundance. Berchet et al. [81] found that emissions
were likely to be less than half of that proposed by Shakhova
et al. [80] and that atmospheric observations were more con-
sistent with terrestrial or marine biosphere emissions rather
than methane hydrates. Shipborne eddy covariance observa-
tions suggest ~3 TgCHy/year for the Eastern Siberian Arctic
Shelf [82], in agreement with Berchet et al. [81].

On land, longer growing seasons and higher temperatures
are expected to drive increased productivity, and greening
trends seen in NDVI data are consistent with this. However,
many factors add to the complexity of how the terrestrial
Arctic carbon cycle will change. Warming soils could drive
an increase in respiration that partially offsets increases in
productivity [83]. Long-term eddy covariance studies show
that opposing fluxes of photosynthesis and respiration mostly
cancel each other out, and changes in the net carbon balance
are small [84, 85]. Increases in precipitation and earlier snow-
melt could affect soil moisture over the growing season,
benefitting some plant communities while disadvantaging
others. Expansion of woody plants into tundra regions will
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increase evapotranspiration [76], while thawing of permafrost
could initially increase inundated areas due to subsidence
leading to expanded methane-producing environments. In
areas of discontinuous permafrost, drainage, encroachment
of vegetation, and filling of shallower lakes will all have im-
plications for carbon exchange [35, 86]. With drier conditions
and possibly increased ignition by lightning, fires could in-
crease in the Arctic releasing built up carbon from organic-
rich soils [57].

The amounts of CO, and CH,4 emitted to atmosphere as
permafrost thaws depend on the decomposability of organic
matter stored in the soil and whether the decomposition occurs
aerobically or anaerobically. Aerobic and anaerobic condi-
tions are dependent on soil hydrology, which is susceptible
to change as permafrost thaws [87]. As permafrost thaws,
carbon release will initially increase rapidly as easily
decomposed material is broken down leaving less labile car-
bon with slower release rates. Rates of carbon release are
dependent on hydrological status, and field studies have
shown considerable spatial variability in this over relatively
small scales as shown by Chang et al. [38] who also pointed
out that uncertainty in temperature and precipitation driving
data could cause biases in CO, and CH, fluxes that are com-
parable to variability due to landscape heterogeneity. Methane
is consumed in dry soil and oxic water columns [88, 89], and
this must also be accounted for. In organic-rich, inundated
environments, anaerobic respiration dominates, a slow pro-
cess in comparison to aerobic respiration that leads to higher
CH,4 emissions. This is important because of the larger radia-
tive impact of CH4 with a 100-year global warming potential
that is about 25 times greater than CO, on a per mass basis
[90]. Incubation studies show that aerobic respiration releases
about 6 times the amount of carbon per year as anaerobic
respiration ([42], see Fig. 2b). Abrupt permafrost thaw can
lead to both formation and drainage of wetlands and small
lakes, and the balance between lake/wetland formation and
drainage determines whether aerobic or anaerobic decompo-
sition dominates. The largest carbon emissions from perma-
frost regions could occur after present-day continuous perma-
frost has transitioned to discontinuous permafrost. Schuur
et al. [42] estimated that 5—15% of permafrost could thaw by
2100. Assuming that 10% thaws over the next century, then
130-160 PgC could be vulnerable to thaw, although Turetsky
et al. [91] project that 200 PgC could be vulnerable by 2300
with another 60—100 PgC vulnerable due to abrupt thaw.
Models that include permafrost predict lower amounts of vul-
nerable carbon, ~30-115 PgC thawing by 2100 (e.g., [92])
likely because they do not include landscape changes such as
those due to abrupt thaw and thermokarst formation. Schuur
etal. [42] estimate that, assuming a constant release rate, 0.9 =
0.5 PgClyear could be emitted into the atmosphere over the
next century. If 2.3% of this is emitted as CH, (e.g., [93]) then
28 TgCHy/year could be emitted as CH4. However, release of
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permafrost carbon will not be evenly distributed over the next
century; rather, it will slowly increase with time into the
twenty-second century unless CO, emissions are significantly
mitigated.

We have thus far documented the changing Arctic climate
and its effect on the ecosystem and carbon emissions.
Consideration of permafrost emissions aside, the current cli-
mate changes should have profound effects on carbon emis-
sions in the Arctic. We therefore turn to the question of what
changes in Arctic carbon emissions have been observed and
whether they are attributable to specific processes.

Observational Evidence for Carbon Cycle
Changes at High Northern Latitudes

Current Understanding of Arctic Carbon Cycle
Changes

Some analyses of atmospheric observations have found
changes in high-latitude CO, fluxes. Graven et al. [94] used
surface monitoring observations at Barrow, Alaska, and
Mauna Loa, Hawaii, along with aircraft campaign observa-
tions to conclude that significant changes in the annual cycle
of atmospheric CO, (~50% amplitude increase) occurred be-
tween 1958 and 1961 (campaigns associated with the
International Geophysical Year) and 2009-2011 for latitudes
north of 45° N. They attributed these changes to an increase in
CO, uptake of 30—60% mainly by boreal forests. Graven et al.
[94] also found that the CMIP 5 models were unable to pro-
duce this large of an increase in terrestrial productivity. These
findings were later confirmed by the annual cycle analysis of
Barlow et al. [95] and similar conclusions were also reached
by Forkel et al. [96]. Barlow et al. [95] showed that changes in
the seasonal amplitude of atmospheric CO, at Barrow from
1973 to 2015 were strongly correlated with trends in net car-
bon uptake during spring and summer months but had only a
weak relationship with the net release of CO, in autumn and
winter months. They also showed that the start and end of the
carbon uptake period have been getting earlier each year, but
the length of the uptake period has remained comparatively
constant, likely due to increased respiration. Collectively,
these observations are consistent with northern latitude eco-
systems progressively taking up more carbon during spring
and summer months.

Atmospheric observations have shown that respiration
from Arctic soils may also be increasing, at least for the
North Slope region of Alaska. Commane et al. [98] used
high-frequency observations from the Barrow Observatory
to show that regional tundra emissions during the early cold
season rose by 73% over 41 years, a response not captured by
CMIPS models. Further, they estimated that during 2012—
2014, net emissions from tundra in Alaska dominated a small
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Fig. 2 Zonal average growth rate
anomalies of CO, (top, ppm/year)
and CH,4 (bottom, ppb/year) from
the NOAA Global Greenhouse
Gas Reference network. Warm
colors represent higher than
average atmospheric growth and
cooler colors show slower than
average atmospheric growth.
Growth rate anomalies were
calculated using observations
from the NOAA Global
Monitoring Laboratory’s
Greenhouse Gas Reference
Network (https://www.esrl.noaa.
gov/gmd/ccgg/)

SINE LATITUDE

2000

Latitude

net uptake by boreal forest ecosystems, making Alaska a net
carbon source during these years. Consistent with these re-
sults, Jeong et al. [99] used the long-term Barrow record of
atmospheric CO, and a carbon balance model to show that the
carbon residence time in tundra ecosystems on the North
Slope of Alaska has decreased by ~ 13%. They also proposed
that increasing cold season soil carbon emissions could ex-
ceed warm season uptake making these ecosystems a net
source of carbon to the atmosphere. Although long-term at-
mospheric records of CO, seem to support changing CO,
fluxes, it is interesting that they do not yet indicate that CHy
emissions are increasing at least for the region near the Barrow
Observatory on the North Slope of Alaska [100]. This can be
explained if lake drainage and drying of wetlands reduced the
area of methane emitting landforms.

Insights from Global Atmospheric Observations

Globally distributed, long-term monitoring observations of
CO, and CHy in the atmosphere can provide information
about the spatial and temporal distribution of fluxes.
Figure 2 shows observed zonal average growth rate anomaly
for both gases. Growth rates vary interannually with latitude
and time, providing clues about the mechanisms of changing
fluxes. However, atmospheric transport of lower latitude
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Year

2015

Sine Latitude

2010
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2005

emissions must be taken into account to correctly interpret this
information. Dlugokencky et al. [101] proposed that spatial
gradient information like that shown in Fig. 2 could be used as
a sensitive indicator of changing Arctic CH, emissions, spe-
cifically by calculating the difference in measured mole frac-
tion between zonally and annually averaged sites at northern
(53-90° N) and southern (53-90° S) latitudes. This interpre-
tation of the CH, observations could be possible in part be-
cause the high latitudes of the Southern Hemisphere have no
known significant sources or sinks of CH4 except for photo-
chemical loss in the atmosphere which is relatively small at
polar latitudes. Dlugokencky et al. [101] referred to this dif-
ference as the “interpolar difference” (IPD). They noted a
decrease between the IPD prior to 1991 and afterwards
(Fig. 3) and attributed this difference to the collapse of the
Soviet Union and subsequent reduction in oil and gas leaks
due to infrastructure investments by the Russian gas industry.
Dlugokencky et al. [102] concluded that the existing long-
term measurement network could detect changes in Arctic
emissions of at least 10 TgCH,/year.

Implicit in the IPD is the assumption that signals from
changes in emissions and sinks outside of the Arctic are
transported equally to the polar latitudes of both hemispheres
within the same calendar year (the IPD is an annually aver-
aged quantity). Tropospheric interhemispheric transit times
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are about 1 year [103] so that the IPD cannot capture transport
of low-latitude emissions to both polar regions within a year.
Dimdore-Miles et al. [104] showed that relaxing the assump-
tion of symmetric hemispheric transport results in significant
interannual variability in the IPD that is not exclusively attrib-
utable to Arctic emissions.

We further explore the sensitivity of the IPD to changes in
Arctic emissions using atmospheric transport modeling. It is
important to force simulations with emissions that result in a
realistic north-south gradient. For this reason, we use esti-
mates of CHy emissions from an atmospheric inversion (see
the “Bottom-up Approaches” section) because the magnitude
and spatiotemporal distribution of CH, emissions are uncer-
tain. In essence, emission estimates from inverse models have
been adjusted in order to agree optimally with atmospheric
observations. This is shown in the top panel of Fig. 4, where
there is reasonable agreement between the observed and the
IPD simulated using emissions estimated by the inversion.
The bottom panel of Fig. 4 shows a comparison simulated
annual average differences from the South Pole observations
for each Artic network site. Two sets of simulations are
shown, one using estimated emissions that have been adjusted
to agree with observations by using an atmospheric inversion
model and another using a constant repeating seasonal cycle
of emissions north of 60° N constructed by averaging the
estimated emissions. This figure shows that interannual vari-
ability in the IPD is dominated by atmospheric transport, not
emissions. Furthermore, the long-term trend towards increas-
ing IPD after 2005 is also dominated by atmospheric transport
and likely is a reflection of increasing CH, emissions from
lower latitudes. In addition, some sites have a lot more vari-
ability than others, and there is a gradient between sites at
lower and higher latitudes. Sites such as Iceland and those
on the Aleutian Islands often see air from the North Pacific
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or Atlantic during the warm season and therefore do not al-
ways capture Arctic signals. Clearly, atmospheric transport
complicates any attempt to directly link atmospheric concen-
tration with emissions and must be accurately taken into
account.

Bottom-up Versus Top-down Estimates of Arctic
Carbon Budgets

Techniques for estimating carbon budgets can be classified as
either “bottom-up” or “top-down” approaches. Bottom-up ap-
proaches (the “Bottom-up Approaches” section) make use of
measurements or process-based models that are upscaled re-
gionally. Examples include upscaling of the chamber and ed-
dy flux observations to pan-Arctic scales (e.g., Ueyama et al.
[106, 107]) or global scales [108]. Process models of emis-
sions are also a bottom-up approach since they model specific
processes, are evaluated against flux observations, and used to
predict regional fluxes (e.g., [109]). In contrast, top-down ap-
proaches use atmospheric observations to infer fluxes.
Atmospheric observations reflect integrated contributions
from fluxes encountered by air parcels as they are transported
to measurement sites, including contributions from lower lat-
itudes. These signals must be decomposed spatially and tem-
porally to estimate fluxes at desired scales, generally by using
an atmospheric transport model with realistic meteorology
(“Atmospheric Inversions” section).

A perennial problem is disagreement between bottom-up
and top-down estimates of Arctic carbon budgets. The AMAP
Assessment of Arctic Methane ([110], Chapter 6) found that
published estimates of emissions for various natural sources
totaled over 70 TgCHy/year, almost three times top-down es-
timates that included both natural and anthropogenic Arctic
emissions. At the global scale, Saunois et al. [111] highlighted
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large discrepancies between estimates from bottom-up and
top-down approaches. For example, for the category of “other
natural emissions” (inland waters, geological emissions,
oceans, termites, wild animals, and permafrost) bottom-up
global estimates are 222 TgCHy,/year (range 143-306
TgCHy/year), while top-down estimates based on atmospheric
observations are almost an order of magnitude smaller, 37
TgCHy/year (21-50 TgCH4/year)—an astounding difference!
Saunois et al. [111] discussed a number of possible ap-
proaches that could lead to better agreement between top-
down and bottom-up CH, emission estimates, including in-
creased spatial and temporal coverage of flux observations
and their use for evaluation of models of natural CH, fluxes,
improving understanding of uncertainties due to atmospheric
chemical destruction of CHy4, more frequent updates of anthro-
pogenic emission inventories and further development of wet-
land and lake datasets. They also point out that top-down

2000 2005 2010 2015 2020 2025

estimates could be improved by incorporating stable isotope
observations, for example, 13CH4 which can help constrain
the relative contributions from microbial and thermogenic
emissions. Space-based column retrievals could also provide
better spatial and temporal coverage although good quality
retrievals can be relatively sparse at high latitudes due to solar
geometry and long atmospheric path lengths. Uncertainty in
atmospheric transport is an additional source of disagreement
between bottom-up and top-down approaches, and Saunois
et al. [111] advocate for the expanded use of vertical profile
measurements to evaluate transport uncertainty.

Bottom-up Approaches
Bottom-up estimates of the Arctic carbon budget are typically

achieved by upscaling observations or by simulating the car-
bon cycle with process models. These approaches have
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advantages and limitations. Process models can provide a
large-scale view across decades but are limited by the accura-
cy of the climatic forcing and their representation of biogeo-
chemical processes. Models need detailed spatial information
about soil and vegetation that often is not available.
Observations with flux chambers and eddy covariance towers
are detailed snapshots of the carbon exchange of Arctic land-
scapes but severely restricted in time due to data outages or the
short duration of field campaigns. Spatial coverage is also
limited, and biases in pan-Arctic budget estimates can result
from historic decisions to focus resources on establishing the
importance and magnitude of the most significant carbon
fluxes. Infrastructure limitations range from access or power
availability, to meeting theoretical assumptions critical to the
measurement; for example, the need to place flux towers in
uniform terrain due to the complexities of atmospheric bound-
ary layer dynamics. For CHy, flux observations may be made
near-broad, uniform wetlands with fewer nearby ecologically
diverse or drier upland environments, leading to a bias to-
wards larger overall emissions in upscaled flux products
[112].

CH,4 emissions from lakes are an interesting example of the
difficulties in extrapolating field observations. Based on stud-
ies of Siberian thermokarst lakes underlain by organic-rich
yedoma soils, Walter et al. [113] estimated that ebullition
could lead to significant local CH4 emissions (3.8 TgCHy/year
for their study area). They also proposed that permafrost thaw
over 25 years led to a nearly 60% increase in emissions from
their study area. Having established the existence, local mag-
nitude, persistence, and potential significance of a source that
previously had not been considered in Arctic CH, budgets,
they estimated the pan-Arctic significance of their source:
24.2+10.5 TgCHy/year [114]. This amount would account
for most of the emissions estimated from atmospheric obser-
vation using inversions [110], leaving no room in the Arctic
budget for wetland emissions, anthropogenic emissions, and
emissions from shallow continental shelves (assuming atmo-
spheric inversions are correct and assuming sinks are not
underestimated).

Wik et al. [115] pointed out the difficulties in scaling up
emissions using techniques exploited by Walter et al. [113] to
estimate emissions, namely using bubbles frozen in ice over
winter. They pointed out that bubbles collected over winter
cannot be used to scale up to continuous emissions; more
transects are needed covering larger sections of lakes.
Another complication is the possible oxidation of CH,4 over
time in trapped bubble air. A comprehensive study by
Sepulvedo-Jauregui et al. [116] that looked at emissions of
both CH4 and CO, from high-latitude lakes found that CH, in
fresh bubbles was 33% higher than bubbles trapped in ice.
Wik et al. [117] synthesized CH4 flux measurements from
over 700 lakes located north of 50° N and used the satellite
databased lake inventory of Verpoorter et al. [118] to estimate
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high northern latitude lake emissions. They found total emis-
sions of 16.5+9.2 TgCH,/year, closer to top-down estimates.
Wik et al. [117] also found that those post-glacial lakes, rather
than thermokarst lakes, were likely to account for the largest
share of emissions due to their larger surface areas, a conclu-
sion that could vary depending on latitude range considered
due to the distribution of permafrost and yedoma soils.

Wik et al. [117] upscaled site-specific flux observations by
using spatial information about lake distributions from remote
sensing data. A significant challenge for estimating CH,4 emis-
sions from lakes and wetlands is accurate information about
where the CHy-producing environments are and how their
distribution changes over time. Not all CH4-producing lakes
and ponds are visible from space, and there is a continuum
between small ponds and wetlands as pointed out by
Holgerson and Raymond [119] who estimated that small
ponds could contribute about 600 TgCl/year (both CO, and
CH,) to the global carbon budget. Furthermore, shallow water
bodies, especially with vegetation growing in them, are
among the highest CHy emitters, and getting information
about water depth from remote sensing observations is diffi-
cult. Thornton et al. [120] showed that the problems with
definition of small water bodies and wetlands complicate the
understanding of the relative contributions of lakes and wet-
lands and can lead to double-counting of emissions and
bottom-up estimates that are biased high.

Even with the difficulties highlighted above, significant
advances have been made over recent decades to estimate
the carbon balance of the Arctic through simultaneous in-
crease in observations and advancement of models, together
with the assimilation of remote sensing data. By combining
both observations and process models over the time period
19902006, McGuire et al. [121] estimated that Arctic tundra
may be a sink of carbon of — 110 TgC year ', with an uncer-
tainty ranging from a modest sink of —291 TgC year ' to a
small source of 80 TgC year '. They also estimated that the
tundra biome is a CHy source of 19 TgC year ', with a lower
and upper boundary of 8 and 29 TgC year . In this study, flux
measurements were grouped into dry/mesic and wet vegeta-
tion classes. This distinction of water availability is important,
since anoxic wet soils are a source of CH, and exhibit lower
respiration rates than drained oxygenated soils. Differences in
water availability can, given the high heterogeneity of Arctic
landscapes, lead to large contrasts in CO, and CH, fluxes
across short distances [122, 123]. Accurate knowledge of the
distribution of wetlands and drained uplands, and their relative
extents, is critical for accurate Arctic carbon budget estimates.
The full climatic and ecological range present in the Arctic
remains severely under-sampled, and this complicates
constraining changes in the regional budget without the use
of models or statistical methods.

Process models have, since the turn of the century, been
instrumental in showing how carbon cycle feedbacks can
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accelerate climate change [124, 125]. The global models in
use at the time had a basic representation of the terrestrial
biosphere and early model development focused on the de-
mography of tropical and mid-latitude forests, rather than the
tundra biome and the permafrost region. Since then, signifi-
cant advances have been made to make transient simulations
of the Arctic carbon cycle, either forced by observations of
past climate or under future climate scenarios. For example,
terrestrial biosphere models have started to represent dwarf
shrubs, sedges, and mosses (e.g., [126—129]) as well as the
simulation of carbon stocks in permafrost and peatland soils
(see e.g. [109, 130-132]). These advances have made it pos-
sible to explore changes in the Arctic carbon budget over time,
and the potential for carbon cycle feedbacks.

A comparison of 10 terrestrial biosphere models showed a
uniform increase in net primary production (NPP) over the
period 1960-2009 across the permafrost region [133]. This
increase was interpreted to be in response to higher tempera-
tures and a fertilization effect of elevated CO, concentrations.
Individual models, however, showed large differences in
gross primary production (GPP)—up to a factor of two—
highlighting the large uncertainty in quantifying actual chang-
es in the regional carbon budget. Moreover, it is unclear
whether there will be a net uptake of CO, with more climate
warming since the release of carbon from permafrost soils
may offset the increased uptake by vegetation. A comparison
of 5 biogeochemical land models up to 2300 [71] showed a
continued net uptake of carbon under the moderate warming
scenario of RCP4.5, where litter input into the soil offset some
of the permafrost carbon loss. However, model responses of
vegetation and soil carbon strongly diverged under the high
warming scenario RCP8.5—showing both a net release and
net uptake of carbon by 2300.

Besides diverging model results, it is important to note that
there are a number of important processes missing from the
models, or poorly implemented, which make future projec-
tions highly uncertain. Rapid thaw due to thermokarst has
the potential to double permafrost carbon loss [134], but these
processes play out at small scales and few implementations in
land surface schemes exist [135]. Models strongly underesti-
mate winter emissions, even though these may be large
enough to offset the carbon uptake during the summer [107].
Extreme winter events have also been pinpointed as the cause
of recent reductions in the growth of and carbon uptake by
arctic vegetation [52, 136], which models fail to represent.
Although a large uncertainty exists on the current and future
importance of these factors, they have the capacity to reduce
the uptake of CO, by the Arctic and need to be a focus of
model development.

Despite the uncertainty on the current and future sign
of Arctic CO, exchange, it is clear that the Arctic is a
source of CHy, and there is a valid concern that these
emissions may increase in the future. Much of this work

has focused on wetlands, the largest natural CH, source
globally and in the Arctic. Early bottom-up studies of
wetland CH, emissions north of 50° N estimated that
these emitted 15+ 10 TgC year ' [137, 138]. The repre-
sentation of CH, production and consumption in these
early model implementations was rudimentary and used
fixed relationships with NPP, which is why they were
mostly useful to estimate steady-state budgets rather than
a response of wetland emissions to global warming.
Improving upon these pioneering studies, Walter and
Heimann [139] designed a methane model that was both
process-based and climate-sensitive, and therefore useful
for studies of global change. Production and consumption
of CH4 were modeled as temperature-sensitive processes,
and diffusion, plant transport, and ebullition were explic-
itly represented. Most methane schemes that are used in
land surface models today incorporate some or all of the
concepts introduced by the studies above (e.g.,
[140-144]). Moreover, new processes continue to be
added, such as the inclusion of microbial mechanisms
[145], sensitivity to pH [144], or improved oxidation of
atmospheric CHy in upland soils [146]. This progressive
improvement of process representation has made methane
models skillful when compared to field observations at
the site level (e.g., [147]), but it remains challenging to
derive accurate pan-Arctic budgets.

Since CH4 production is a temperature-sensitive process,
global methane models typically simulate an increase in emis-
sions with global warming [148]. The Arctic is the fastest-
warming region in the world, partly due to the sea ice-
albedo effect, and models predict that this has led to a pan-
Arctic rise in CH,4 emissions of a few TgC per year over the
period 2005-2010 compared to the 1980s [141]. Regional
drying, however, can compensate for such increases [149],
which would explain why this signal has not been detected
in the atmosphere [148]. Precipitation is expected to increase
following sea ice retreat [150], but the moisture status of the
surface will also depend on how evapotranspiration and drain-
age will change with temperature increase, snow cover loss,
and permafrost thaw [30]. Whether the Arctic will become a
larger source of CH, depends not only on temperature but also
at least as much on whether the region will become drier or
wetter.

Knowledge of the location and extent of wetlands is para-
mount for estimating the pan-Arctic methane budget. To illus-
trate, modeled estimates of CH4 emissions can easily vary by a
factor of 4 depending on the prescribed wetland product [151].
Besides, even if static wetland maps are perfect representa-
tions of the location of wetlands today, it cannot be expected
that this extent will remain constant for decades, especially
with changing climate. Accurate representations of the tran-
sient response of the wetland distribution to changing climate
are needed to answer important questions about how carbon
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fluxes will evolve in the future. In recent years, this problem
has been tackled by combining the knowledge of static wet-
land maps with the dynamics of surface inundation products
derived from microwave remote sensing data [152]. Static
maps provide useful information about the locations of wet-
lands and lakes at a particular point in time, while the surface
inundation products vary over time but are typically not sen-
sitive enough to capture saturated soil environments typical of
wetlands. In combining these two types of information, a
hopefully more comprehensive distribution of potential
methane-producing environments can be produced that is use-
ful for models. In practice, this is a movement away from an
ecological definition of wetlands, such as vegetation compo-
sition, to a hybrid definition that relies on a physical
property—water table—that varies throughout the year. This
approach assumes that the land surface does not emit CHy
unless the water table is at or above the surface, even though
CH,4 emissions can continue when the water table is 10 to
15 cm below the surface [153]. It also ignores frozen soils
while up to half of annual emissions from permafrost wetlands
may originate from deeper unfrozen layers during the winter
[154-156]. Wetland products that rely on surface inundation
may therefore have limited value for the high latitudes, even
though it is clear that such products could be a valuable ad-
vancement from a global modeling perspective.

Saunois et al. [111] determined global wetland emis-
sions with thirteen biogeochemical models that used the
latest remote sensing—based wetland area and dynamics
dataset (WAD2M; Wetland Area Dynamics for Methane
Modeling). For the region north of 60° N, the models
estimated that wetland CH,4 emissions were 7 [2—14]
TgC year ' in the time period 2008-2017. This is only
about a quarter of the 26 [16-35] TgC year ' previously
estimated with many of the same models for the signifi-
cantly smaller area of Arctic tundra [121]. The lower es-
timate is due to the subtraction of surface area covered by
ponds and small lakes to avoid double-counting [120] as
well as the above-mentioned high-latitude issues with sur-
face inundation and frozen soils. Then again, even bio-
geochemical models that include microbial oxidation of
CH, in soils, especially drained upland soils, may under-
estimate the Arctic soil sink by as much as ~4 TgC year '
[88]. This illustrates the importance of including all land-
scape types in assessing net emissions of methane.

While many advances have been made to simulate the
biogeochemistry of wetlands and their extent, fewer stud-
ies have attempted to model CH, emissions from other
CH,4 sources in the Arctic, such as lakes, geological
sources, and the ocean. One of the few modeling studies
that have estimated lake emissions with explicit represen-
tation of biogeochemical processes derived a pan-Arctic
budget of 9 [5-13] TgC year ' [157]. This compares rea-
sonably well to bottom-up estimates based on
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extrapolations of flux measurements [111, 117, 158], but
the continuous formation and drainage of thermokarst
lakes in permafrost landscapes make it challenging to
model emissions prognostically [159]. For the Arctic
Ocean, detailed models exist that can simulate the evolu-
tion of gas hydrates and their emission to the atmosphere
(e.g., [160]) but due to the slow thaw of subsea perma-
frost, which has been ongoing since these environments
were submerged at the end of the last glacial, gas hydrates
are not expected to destabilize until the next millennium
[161]. Bottom-up estimates of geological emissions from
the terrestrial Arctic are relatively small, ~2 TgC year '
[162], but these emissions may respond to changes in
permafrost thickness and disappearance of glaciers and
ice caps.

Current bottom-up estimates of the Arctic carbon bud-
get show that the region is a sink of CO, but a source of
CH4. Model simulations suggest that the strong rise in
arctic temperatures and the thaw of permafrost may turn
the region into a net source of carbon, although current
projections for the twenty-first century do not indicate a
release of greenhouse gases that is larger than anthropo-
genic emissions [42, 163]. However, these projections are
highly uncertain due to missing representation of
thermokarst and key winter processes that may enhance
arctic carbon loss. The risk of a large, uncontrolled, car-
bon cycle feedback from the Arctic remains a distinct
possibility as long as anthropogenic emissions continue
to rise and the amplified warming of the Arctic worsens.

Atmospheric Inversions

Atmospheric flux inversions use statistical optimization
procedures and atmospheric transport models to estimate
carbon fluxes that are in optimal agreement with both
prior (first-guess) flux estimates and observations that
are distributed in time and space (e.g., [164, 165]). Prior
flux estimates come from scaled-up field observations,
process emission models, and economic inventories of
anthropogenic emissions (livestock populations, fossil fu-
el production, etc.). Sparseness of observations, especially
in the Arctic (and other regions such as the tropics), limits
the spatial and temporal information that can be retrieved
about fluxes, and therefore, prior flux estimates are used
to stabilize an under-determined estimation problem. In
regions where data are sparse or nonexistent, the estimat-
ed flux remains close to the prior estimate, producing
posterior estimates that may be biased or not vary in time
realistically.

A potential source of error for atmospheric inversions
comes from uncertainty in transport of emissions by at-
mospheric circulation at both regional/global and local
scales. Atmospheric transport models often have large
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grid boxes that range in size from 10 to 100 s of km, such
that coarse-resolution simulations are compared with
point observations introducing representation errors.
Although the original measurement network sites were
chosen to sample air located far from strong local sources
that are relatively easy for models to simulate (back-
ground atmospheric sites), representation errors become
much more significant for air samples collected near
sources, yet these samples offer potentially useful con-
straints of source variability in space and time. This prob-
lem is especially difficult for regions that have large spa-
tial heterogeneity of sources. Increasing horizontal and
vertical resolution of a transport model may improve the
representation of transport in models and this has led to
use of higher resolution (10 km) regional models for at-
mospheric inversions (e.g., [166]). Use of regional trans-
port models requires specification of boundary conditions
to capture the inflow of carbon from other latitudes or
regions, however, and these are difficult to constrain with
sparse observations.

Carbon fluxes estimated using an inverse model com-
bine information coming from prior flux estimates, and
information from observations. The relative weighting of
these two types of observational constraints is dependent
on uncertainties associated with the prior flux estimates
and the observations. For observations, the uncertainties
come from both the measurement uncertainty, which is
generally very small for atmospheric in situ network ob-
servations, and the transport model error, which is diffi-
cult to quantify and much larger than the measurement
uncertainty. This type of error is referred to as “model-
data mismatch error.” For the prior fluxes, uncertainties
are often difficult to quantify, although emission invento-
ries sometimes include uncertainty estimates. A small pri-
or uncertainty will lead to a solution that stays close to the
prior fluxes and therefore may fail to capture actual flux
variability. A small model-data mismatch error will result
in a solution that tracks observations closely, possibly
with unrealistic variability in flux estimates. A sparse net-
work sampling the background atmosphere can still be
useful for constraining some large-scale aspects of source
distributions.

Figure 5 shows CO, fluxes from 4 atmospheric inver-
sions for the Boreal (50°-60° N) and the Arctic (60°-90°
N) zones. The top figures show the model average monthly
CO, fluxes and the range of the models (light blue area). For
this study, we used inversions that were constrained only by
in situ data. Retrievals from satellite-based instruments do
exist that include some coverage of the Arctic in the sum-
mer; however, it is not currently possible to capture year-
round carbon fluxes due to the viewing and solar geometry
[171]. For the Boreal zone, there appears to be a jump in
summertime uptake in the early 1990s; however, estimates

prior to 1993 exist only for one of the 4 inversions, and
differences between inversion systems could produce such
a discontinuity. Note also that the inter-model range of the
monthly estimates is quite large, a reflection of differences
among the inversions; priors, transport models, prior errors
used, and data selection. For both zones, it appears that the
maximum summer uptake has been increasing since 1980,
especially for the Boreal zone. This agrees with the obser-
vational analysis of Graven et al. [94], discussed further by
Leonard et al. [172]. The bottom panels of Fig. 5 show
annual average net CO, fluxes from the inversion ensemble.
The Boreal zone net CO, flux is about — 0.3 PgC/year, while
the Arctic zone takes up only about 1/3 this amount (—
0.13 PgCl/year). There is a slight trend of increasing net
uptake that is statistically significant for the Boreal zone
(p=0.0003), but the small trend for the Arctic is not statis-
tically significant. These results agree with the study of
Welp et al. [173], who did not find significant trends north
of 60° N from flux inversions, but small trends in the Boreal
zone. Statistically significant trends in CO, respiration were
not found by the inversions used here, implying that the
results of Commane et al. [98] are possibly localized to the
vicinity of Barrow, Alaska, or that the inversions do not
have the sensitivity to recover an increase in cold season
respiration, or that increases in respiration are compensated
for by another process, perhaps increased ocean uptake with
lower sea ice cover.

Global inversions have been collected by the Global
Carbon Project CH4 Project [111]. Figure 6 shows esti-
mated natural emissions for 11 inversions that are
constrained by in situ observations. The model spread is
quite large due to differing transport models, priors, un-
certainties, and observations. Interannual variability is
seen in the flux estimates, and 2016 and 2017 appear to
have significantly higher emissions. Emissions from the
Boreal zone, which includes some large wetland com-
plexes such as the Hudson Bay Lowlands in Canada and
the southern part of the West Siberian lowlands, are about
twice as large as for the Arctic zone. There is no statisti-
cally significant trend in emissions from the Boreal zone
in contrast to Thompson et al. [97] who used a regional
inverse model to find that CH, emissions have been in-
creasing north of 50° N. For the Arctic zone, there does
appear to be a small, but statistically significant trend
towards increasing emissions of ~0.2 TgCH,/year.

Trends in fluxes estimated from inverse models should
be considered with caution because the data used to con-
strain inversions is still very sparse and records do not yet
cover the very long periods necessary to robustly detect
trends. Biases in transport and prior fluxes are also possi-
ble sources of error in inversions. However, at present,
inverse models are not suggesting large changes in the
net carbon flux north of 50° N are occurring.
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Fig. 5 (Top) Estimated monthly CO, fluxes from 4 global inversions
constrained by in situ data for the Boreal zone, defined here as 50°—60°
N, and the Arctic zone, defined here as 60°-90° N. The dark blue line
shows average monthly fluxes in PgClyear, the light blue shaded area
indicates the range of the 4 inverse models, and black line indicates the
model average annual fluxes. Global inversions used are the Jena
CarboScope ([167], s93_v4.2, bgc-jena.mpg.de/CarboScope.), the

Cold Season Emissions

Cold season CO, emissions from Arctic soils are expected to
increase due to increasing winter temperatures (the “Arctic
Climate Change” section). Winter snowpack increases could
further affect cold season emissions by insulating soils, keep-
ing them warmer, and allowing more respiration. Using in situ
atmospheric CO, observations from Barrow, Alaska,
Commane et al. [98] inferred increased emissions of CO,
early in the cold season. Natali et al. [107] synthesized both
chamber and eddy covariance flux measurements for the cold
season (October-April) from over 100 sites throughout the
Arctic and Boreal high latitudes using machine learning tech-
niques with a variety of environmental drivers (vegetation
type, soil moisture, soil temperature). Their approach is simi-
lar to that used by Jung et al. [108] to produce the FLUXCOM
product based on global eddy covariance flux tower observa-
tions. Natali et al. [107] found that 1.7 PgC/year is emitted as
CO, from permafrost region soils during the cold season, an
amount exceeding their modeled estimate of uptake during the
warm season giving a net CO, source. They also noted that
they did not find any trends in cold season emissions for
2003-2017, which they attribute to a lack of circumpolar
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CAMS Greenhouse Gas Flux Inversion Product [168], https://apps.
ecmwf.int/datasets/data/cams-ghg-inversions/), CarbonTracker ([169],
CarbonTracker CT2017, http://carbontracker.noaa.gov) and
CarbonTracker-EU ([170], http://www.carbontracker.eu). (Bottom)
Annual average CO, flux estimates for the 4 global inversions. The
solid line shows the long-term mean. The slope refers to the slope of
the linear least-squares fit line and its uncertainty

trends in the reanalysis data used in their algorithm. They
did, however, find increases in winter respiration for site-
level data from Alaska.

Figure 7 shows annual net CO, exchange and cold/warm
season fluxes for latitudes north of 60° N estimated using top-
down and bottom-up approaches. Results from two atmo-
spheric inversion systems (CarbonTracker and
CarbonTracker-Europe) suggest that the Arctic is taking up
more CO, than is respired over a year. The prior flux estimates
used in these inversions are the CASA-GFED model for
CarbonTracker [174, 175] and SiB-CASA for
CarbonTracker-Europe [176], both dependent on remotely
sensed NDVT for estimating GPP. In the annual mean, both
priors are nearly annually balanced with uptake about equal to
respiration. The SiB4 terrestrial ecosystem model [177, 178],
which has prognostic phenology and does not use NDVI,
produces annual net CO, fluxes that are similar to the prior
estimates. FLUXCOM’s annual net flux lies between the in-
versions and bottom-up models. During the warm season,
FLUXCOM shows significantly less uptake than the other
estimates and also less respiration during the cold season.
Likewise, the inversions estimate less cold season respiration
than their prior estimates or SiB4. During the cold season,
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Fig. 6 (Top) Estimated natural Boreal zone (50°-60° N) and Arctic zone
(60°-90° N) CH,4 emissions constrained by surface and in situ data for 11
inversions submitted to the GCP CH,4 Project Budget Update [111]. For
this figure, we focus on inversions that are constrained only by surface
and in situ observations since remote sensing data is limited at high

emissions range from ~ 0.8 PgC/year for FLUXCOM to over
2.5 PgClyear for SiB4. The estimate of Natali et al. [107], 1.6
PgClyear, falls between the inversions and the priors; howev-
er, their calculated warm season uptake (~— 1.0 PgClyear) is
significantly smaller than the inverse estimates by at least a
factor of 3. These results show the difficulty in interpretation
of'annual net CO, fluxes since they are a balance of respiration
and photosynthesis for which estimates from different
methods can significantly diverge.

Conclusions and Recommendations

Multiple lines of observational evidence show that presently
the remote Arctic is undergoing rapid environmental change.
These changes have been directly linked to anthropogenic
emissions [12].

Our understanding of Arctic climate tells us that there are
important feedbacks in operation, such as between the
cryosphere and the atmosphere, and between vegetation and
atmospheric energy/moisture budgets. It is certain that chang-
es in Arctic climate will drive changes in the carbon budget of
the Arctic as vegetation changes, soils warm, fires increase,
and wetlands evolve with permafrost thaw. Massive amounts

Arctic (60-90N)
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latitudes. The dark and light blue lines indicate the model mean and
spread. The black line indicates the model average annual emissions.
(Bottom) Annual average CH, flux estimates for the 4 global
inversions. The solid line shows the long-term mean. The slope refers
to the slope of the linear least-squares fit line and its uncertainty

of carbon are stored in Arctic soils, and some fraction of this
carbon is likely to be mobilized to the atmosphere and oceans
with consequences that will feedback to affect global climate.
This permafrost carbon feedback needs to be understood,
quantified, and taken into account when considering climate
mitigation (e.g., [179]), and formulating policy designed to
ensure temperatures remain below particular thresholds. This
will require a commitment to long-term pan-Arctic observa-
tions, as well as improvements in models used to help better
understand the Arctic climate system.

Observations currently support a more active CO, cycle in
high northern latitude ecosystems with both enhanced produc-
tivity and increased respiration. Evidence points to increased
uptake by boreal forests and Arctic ecosystems. Evidence also
points towards increasing respiration, especially late in the
warm season. On the other hand, there is currently no strong
evidence of increased CH,4 emissions, across the region, al-
though we demonstrated here using atmospheric observations
that small increases cannot be ruled out. Sweeney et al. [100]
pointed out that given the widely observed temperature depen-
dence of microbial production of CH, in Arctic wetlands, the
response of atmospheric CH4 to temperature increases ap-
peared to be much smaller than expected. They attributed this
lack of response to a lack of understanding of processes
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Fig. 7 a Annual net CO, fluxes north of 60° N for two inverse models
and their prior emissions, the SiB4 terrestrial ecosystem model, and
FLUXCOM. b Warm season (May-September) CO, fluxes. ¢ Cold
season (October-April) CO, fluxes. Inversions shown are
CarbonTracker ([169], CarbonTracker CT2019, http:/carbontracker.
noaa.gov) and CarbonTracker-EU (CTE2018, [170], http://www.
carbontracker.eu). The prior flux estimates for both inverse models are
based on terrestrial ecosystem models that use remote sensing
observations to constrain GPP (e.g., NDVI). FLUXCOM is based on
flux tower observations scaled to regional and global scales used
machine learning techniques and ancillary data sets (for example, soil
temperature). Note that negative fluxes indicate removal of carbon from
the atmosphere and positive fluxes indicate emission to the atmosphere

leading to emissions. However, it is also possible that micro-
bial consumption of atmospheric CH, in drier upland soils is
also increasing as temperatures rise and that this process has
been significantly underestimated as proposed by Oh et al.
[88]. Alternatively, a reduction in wetland extent and in-
creased lake drainage may have played a role.

Finally, we point out that long-term observations help us to
understand what has or is changing, but they are also critical

@ Springer

for improving projections of future emissions. Long-term ob-
servations provide the valuable opportunity to test predictive
models and their sensitivity to change. Increasing observation-
al coverage of flux measurements, in situ atmospheric sam-
pling, and remote sensing data from satellites and committing
to maintaining data records over decades will improve our
understanding of the Arctic carbon cycle and how it is chang-
ing over time.
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